If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x=135
We move all terms to the left:
2x^2+x-(135)=0
a = 2; b = 1; c = -135;
Δ = b2-4ac
Δ = 12-4·2·(-135)
Δ = 1081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1081}}{2*2}=\frac{-1-\sqrt{1081}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1081}}{2*2}=\frac{-1+\sqrt{1081}}{4} $
| 21=9p-15 | | 2(x+7)^2=0 | | 2x-5=2x+5-12 | | 5x-4x+9x=285 | | x2=14x-49 | | (7n-4)(7n+4)=0 | | 3x+14=4x-23 | | 4x÷5=-12 | | 7u=24+3u | | X/3-3/4=3x+9/12 | | 4p-4=32 | | 12-9x=12-3x | | 5k+(−2k)−(−1)= | | 26=2z+8 | | 7x+2x-4x=110 | | x2-24x=25 | | (2x-5)+x+(2x-20)=90 | | x^2-8+56=0 | | 12w-3w=36 | | 1/2(4w+40)=3(w+10) | | (3x+14)+(4x-23)=180 | | 9x-5x=140 | | -33=8(4b-6) | | -2r+35=13 | | 6x+6=9-21 | | -3(w-3)=-8w-41 | | -8s-5+6=-23 | | 8x-6x=720 | | x+310=360 | | x^2+25x-3750=0 | | 3+x^2=39 | | 7+x^2=11 |